Sequence Classification Using Support Vector Machines

CHF 61.50
Auf Lager
SKU
DLRVGUILBQL
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 05.11.2025 und Do., 06.11.2025

Details

This book is about classification of nucleotide chains from yeast metabolic cycle data. First of all, the goals and the data set will be explained. After that an introduction in classification tasks, machine learning and support vector machines will be given and the so called Motif-Kernel will be introduced. Furthermore, all used techniques will be explained in detail. Another very important part of this book is the statistical analysis of the data set and of the results. The results of the different methods will be compared and discussed in detail. The last chapter is a short summary of the results.

Autorentext

Thomas Otzasek, M.Stat. M.Sc. studied Statistics and Bioinformatics at the University of Linz. He is working as a Software Engineer and shares his passion for Statistics with his students when teaching at the University of Linz. His greatest strength is the combination of thinking interdisciplinary and simplifying complex issues.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639356335
    • Sprache Englisch
    • Größe H220mm x B150mm x T7mm
    • Jahr 2011
    • EAN 9783639356335
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-35633-5
    • Titel Sequence Classification Using Support Vector Machines
    • Autor Thomas Otzasek
    • Untertitel Inferring Relationships Between Gene Activation and Yeast Metabolic Cycles
    • Gewicht 189g
    • Herausgeber VDM Verlag
    • Anzahl Seiten 116
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.