Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Serre Duality
CHF 48.85
Auf Lager
SKU
6N03PEEK578
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026
Details
High Quality Content by WIKIPEDIA articles! In algebraic geometry, a branch of mathematics, Serre duality is a duality present on non-singular projective algebraic varieties V of dimension n (and in greater generality for vector bundles and further, for coherent sheaves). It shows that a cohomology group Hi is the dual space of another one, Hn i. If the variety is defined over the complex numbers, this yields different information from Poincaré duality, which relates Hi to H2n i, considering V as a real manifold of dimension 2n. The case of algebraic curves was already implicit in the Riemann-Roch theorem. For a curve C the coherent groups Hi vanish for i 1; but H1 does enter implicitly. In fact, the basic relation of the theorem involves l(D) and l(K D), where D is a divisor and K is a divisor of the canonical class. After Serre we recognise l(K D) as the dimension of H1(D), where now D means the line bundle determined by the divisor D. That is, Serre duality in this case relates groups H0(D) and H1(KD ), and we are reading off dimensions (notation: K is the canonical line bundle, D is the dual line bundle, and juxtaposition is the tensor product of line bundles).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131163159
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131163159
- Format Fachbuch
- Titel Serre Duality
- Herausgeber Betascript Publishing
- Anzahl Seiten 124
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung