Signal Extraction

CHF 138.40
Auf Lager
SKU
8TF7TIN3T30
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Fr., 31.10.2025 und Mo., 03.11.2025

Details

The material contained in this book originated in interrogations about modern practice in time series analysis. • Why do we use models optimized with respect to one-step ahead foreca- ing performances for applications involving multi-step ahead forecasts? • Why do we infer 'long-term' properties (unit-roots) of an unknown process from statistics essentially based on short-term one-step ahead forecasting performances of particular time series models? • Are we able to detect turning-points of trend components earlier than with traditional signal extraction procedures? The link between 'signal extraction' and the first two questions above is not immediate at first sight. Signal extraction problems are often solved by su- ably designed symmetric filters. Towards the boundaries (t = 1 or t = N) of a time series a particular symmetric filter must be approximated by asymm- ric filters. The time series literature proposes an intuitively straightforward solution for solving this problem: • Stretch the observed time series by forecasts generated by a model. • Apply the symmetric filter to the extended time series. This approach is called 'model-based'. Obviously, the forecast-horizon grows with the length of the symmetric filter. Model-identification and estimation of unknown parameters are then related to the above first two questions. One may further ask, if this approximation problem and the way it is solved by model-based approaches are important topics for practical purposes? Consider some 'prominent' estimation problems: • The determination of the seasonally adjusted actual unemployment rate.

From the reviews:

"The aim of the author is to describe established procedures which are implemented in 'widely used' software packages. The book can be of great interest for all specialists working in the area of nonlinear systems state and parameter estimation and identification. It will be of significant benefit for time series estimation and prediction in many applications." (Tzvetan Semerdjiev, Zentralblatt MATH, Vol. 1053, 2005)


Inhalt
Theory.- Model-Based Approaches.- QMP-ZPC Filters.- The Periodogram.- Direct Filter Approach (DFA).- Finite Sample Problems and Regularity.- Empirical Results.- Empirical Comparisons : Mean Square Performance.- Empirical Comparisons : Turning Point Detection.- Conclusion.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783540229353
    • Auflage 2005
    • Sprache Englisch
    • Genre Volkswirtschaft
    • Größe H235mm x B155mm x T16mm
    • Jahr 2004
    • EAN 9783540229353
    • Format Kartonierter Einband
    • ISBN 3540229353
    • Veröffentlichung 20.10.2004
    • Titel Signal Extraction
    • Autor Marc Wildi
    • Untertitel Efficient Estimation, 'Unit Root'-Tests and Early Detection of Turning Points
    • Gewicht 446g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 292
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.