Similar Matrix

CHF 49.40
Auf Lager
SKU
JQ63HDPK2RD
Stock 1 Verfügbar
Geliefert zwischen Di., 27.01.2026 und Mi., 28.01.2026

Details

High Quality Content by WIKIPEDIA articles! In linear algebra, two n-by-n matrices A and B are called similar if ! B = P^{-1} A P for some invertible n-by-n matrix P. Similar matrices represent the same linear transformation under two different bases, with P being the change of basis matrix. The matrix P is sometimes called a similarity transformation. In the context of matrix groups, similarity is sometimes referred to as conjugacy, with similar matrices being conjugate. Similarity of matrices does not depend on the base field: if L is a field containing K as a subfield, and A and B are two matrices over K, then A and B are similar as matrices over K if and only if they are similar as matrices over L. This is quite useful: one may safely enlarge the field K, for instance to get an algebraically closed field; Jordan forms can then be computed over the large field and can be used to determine whether the given matrices are similar over the small field. This approach can be used, for example, to show that every matrix is similar to its transpose.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131165801
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131165801
    • Format Fachbuch
    • Titel Similar Matrix
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 124
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38