Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Singular Integrals and Fourier Theory on Lipschitz Boundaries
Details
The main purpose of this book is to provide a detailed and comprehensive survey of the theory of singular integrals and Fourier multipliers on Lipschitz curves and surfaces, an area that has been developed since the 1980s. The subject of singular integrals and the related Fourier multipliers on Lipschitz curves and surfaces has an extensive background in harmonic analysis and partial differential equations. The book elaborates on the basic framework, the Fourier methodology, and the main results in various contexts, especially addressing the following topics: singular integral operators with holomorphic kernels, fractional integral and differential operators with holomorphic kernels, holomorphic and monogenic Fourier multipliers, and Cauchy-Dunford functional calculi of the Dirac operators on Lipschitz curves and surfaces, and the high-dimensional Fueter mapping theorem with applications. The book offers a valuable resource for all graduate students and researchers interested in singular integrals and Fourier multipliers.
States systemically the theory of singular integrals and Fourier multipliers on the Lipschitz graphs and surfaces Elaborates the basic framework, essential thoughts and main results Reveals the equivalence between the operator algebra of the singular integrals, Fourier multiplier Operators and the Cauchy-Dunford functional calculus of the Dirac operators
Inhalt
Singular integrals and Fourier multipliers on infinite Lipschitz curves.- Singular integral operators on closed Lipschitz curves.- Clifford analysis, Dirac operator and the Fourier transform.- Convolution singular integral operators on Lipschitz surfaces.- Holomorphic Fourier multipliers on infinite Lipschitz surfaces.- Bounded holomorphic Fourier multipliers on closed Lipschitz surfaces.- The fractional Fourier multipliers on Lipschitz curves and surfaces.- Fourier multipliers and singular integrals on Cn
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789811364990
- Sprache Englisch
- Auflage 1st edition 2019
- Größe H241mm x B160mm x T24mm
- Jahr 2019
- EAN 9789811364990
- Format Fester Einband
- ISBN 9811364990
- Veröffentlichung 29.03.2019
- Titel Singular Integrals and Fourier Theory on Lipschitz Boundaries
- Autor Pengtao Li , Tao Qian
- Gewicht 653g
- Herausgeber Springer Nature Singapore
- Anzahl Seiten 324
- Lesemotiv Verstehen
- Genre Mathematik