Software Defect Prediction using Bayesian Networks and Kernel Methods

CHF 97.60
Auf Lager
SKU
GDFGSTM9VKB
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Do., 30.10.2025 und Fr., 31.10.2025

Details

There are lots of different software metrics discovered and used for defect prediction in the literature. Instead of dealing with so many metrics, it would be practical and easy if we could determine the set of metrics that are most important and focus on them more to predict defectiveness. In this book, we use Bayesian modeling to determine the influential relationships among software metrics and defect proneness. Furthermore, we propose a novel technique for defect prediction that uses plagiarism detection tools. We use kernel programming to model the relationship between source code similarity and defectiveness and suggest that source code similarity is a good means of predicting both defectiveness and the number of defects in software systems.

Autorentext

Ahmet Okutan was born on 20 June 1976, in Çaykara, Trabzon. He received his BS degree from BOGAZICI University Computer Engineering in 1998.He is an entrepreneur and has professional experience regarding software project management, system analysis and design in more than 50 software projects.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639703467
    • Sprache Englisch
    • Genre Anwendungs-Software
    • Größe H220mm x B150mm x T11mm
    • Jahr 2015
    • EAN 9783639703467
    • Format Kartonierter Einband
    • ISBN 3639703464
    • Veröffentlichung 11.04.2015
    • Titel Software Defect Prediction using Bayesian Networks and Kernel Methods
    • Autor Ahmet Okutan
    • Gewicht 268g
    • Herausgeber SPS
    • Anzahl Seiten 168

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.