Solenoidal Vector Field
CHF 37.25
Auf Lager
SKU
B5L2EN7O630
Geliefert zwischen Mi., 05.11.2025 und Do., 06.11.2025
Details
High Quality Content by WIKIPEDIA articles! In vector calculus a solenoidal vector field is a vector field v with divergence zero: nabla cdot mathbf{v} = 0., The fundamental theorem of vector calculus states that any vector field can be expressed as the sum of an irrotational and a solenoidal field. The condition of zero divergence is satisfied whenever a vector field v has only a vector potential component, because the definition of the vector potential A as: mathbf{v} = nabla times mathbf{A} automatically results in the identity (as can be shown, for example, using Cartesian coordinates):nabla cdot mathbf{v} = nabla cdot (nabla times mathbf{A}) = 0. The converse also holds: for any solenoidal v there exists a vector potential A such that mathbf{v} = nabla times mathbf{A}.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131354083
- Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
- EAN 9786131354083
- Titel Solenoidal Vector Field
- Herausgeber Betascript Publishing
- Anzahl Seiten 72
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung