Solutions of Nonlinear Schr dinger Systems

CHF 120.75
Auf Lager
SKU
OP7ATQHME03
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

The existence and qualitative properties of nontrivial solutions for some important nonlinear Schrdinger systems have been studied in this thesis. For a well-known system arising from nonlinear optics and Bose-Einstein condensates (BEC), in the subcritical case, qualitative properties of ground state solutions, including an optimal parameter range for the existence, the uniqueness and asymptotic behaviors, have been investigated and the results could firstly partially answer open questions raised by Ambrosetti, Colorado and Sirakov. In the critical case, a systematical research on ground state solutions, including the existence, the nonexistence, the uniqueness and the phase separation phenomena of the limit profile has been presented, which seems to be the first contribution for BEC in the critical case. Furthermore, some quite different phenomena were also studied in a more general critical system. For the classical Brezis-Nirenberg critical exponent problem, the sharp energy estimate of least energy solutions in a ball has been investigated in this study. Finally, for Ambrosetti type linearly coupled Schrdinger equations with critical exponent, an optimal result on the existence and nonexistence of ground state solutions for different coupling constants was also obtained in this thesis. These results have many applications in Physics and PDEs.


Presents the first substantial progress in the study of optimal parameter ranges for the existence of ground state solutions to the well-known BEC system in the subcritical case Among the first contributions to the research of the well-known BEC system in the critical case Gives a sharp estimate of least energy to the classical Brezis-Nirenberg problem Nominated as an outstanding PhD thesis by Tsinghua University in 2013 Includes supplementary material: sn.pub/extras

Inhalt
Introduction.- A BEC system with dimensions N = 2;3: Ground state solutions.- A BEC system with dimensions N = 2;3: Sign-changing solutions.- A BEC system with dimensions N = 4: Critical case.- A generalized BEC system with critical exponents in dimensions.- A linearly coupled Schrdinger system with critical exponent.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783662454770
    • Sprache Englisch
    • Auflage 2015
    • Größe H241mm x B160mm x T17mm
    • Jahr 2014
    • EAN 9783662454770
    • Format Fester Einband
    • ISBN 3662454777
    • Veröffentlichung 05.12.2014
    • Titel Solutions of Nonlinear Schr dinger Systems
    • Autor Zhijie Chen
    • Untertitel Springer Theses
    • Gewicht 459g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 192
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38