Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Source Apportionment of PM2.5 in Milan by PMF Receptor Model
Details
This case study discusses the application of a multivariate receptor model, the EPA PMF 5.0 to the PM2.5 dataset from Lombardy region in Italy. The aim of the study is to perform source apportionment investigation of the applied dataset and identify different PM2.5 sources that greatly impact the composition of particulate matter in the studied region. PMF model evaluates contribution to diverse source types of measured PM2.5 concentrations by investigating chemical composition of ambient pollution samples. As a type of receptor models, PMF used as an input data, PM concentrations and their relative chemical specification and provides as an outcome the number of sources, their composition and the source contributions. The analysis of total annual PM2.5 mass concentration revealed presence of 6 sources (secondary sulfate, traffic non-exhaust, biomass combustion/break wear, domestic heating, re-suspended soil dust and secondary nitrate).
Autorentext
Sanja Savi es ingeniera medioambiental y desde 2015 es profesional de la empresa en el mismo ámbito de especialización. Mientras cursaba un máster, fue admitida en la Alta Scuola Politecnica, escuela para jóvenes talentos. En la actualidad, es auditora principal de la norma ISO14001:20015 y es analista de KPI medioambientales para la región paneuropea.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783330345737
- Sprache Englisch
- Größe H220mm x B150mm x T5mm
- Jahr 2019
- EAN 9783330345737
- Format Kartonierter Einband
- ISBN 333034573X
- Veröffentlichung 31.05.2019
- Titel Source Apportionment of PM2.5 in Milan by PMF Receptor Model
- Autor Sanja Savi
- Untertitel Source identification of air pollution
- Gewicht 137g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 80
- Genre Mathematik