Sparse Representation, Modeling and Learning in Visual Recognition

CHF 137.10
Auf Lager
SKU
FVN5UOCPSG3
Stock 1 Verfügbar
Geliefert zwischen Mi., 11.02.2026 und Do., 12.02.2026

Details

This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: describes sparse recovery approaches, robust and efficient sparse representation, and large-scale visual recognition; covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers; discusses low-rank matrix approximation, graphical models in compressed sensing, collaborative representation-based classification, and high-dimensional nonlinear learning; includes appendices outlining additional computer programming resources, and explaining the essential mathematics required to understand the book.

Describes the latest research trends in compressed sensing, covering sparse representation, modeling and learning Examines sensing applications in visual recognition, including sparsity induced similarity, and sparse coding-based classifying frameworks Discusses in detail the theory and algorithms of compressed sensing Includes supplementary material: sn.pub/extras

Autorentext
Dr. Hong Cheng is Professor in the School of Automation Engineering, and Deputy Executive Director of the Center for Robotics at the University of Electronic Science and Technology of China. His other publications include the Springer book Autonomous Intelligent Vehicles.

Inhalt

Part I: Introduction and Fundamentals.- Introduction.- The Fundamentals of Compressed Sensing.- Part II: Sparse Representation, Modeling and Learning.- Sparse Recovery Approaches.- Robust Sparse Representation, Modeling and Learning.- Efficient Sparse Representation and Modeling.- Part III: Visual Recognition Applications.- Feature Representation and Learning.- Sparsity Induced Similarity.- Sparse Representation and Learning Based Classifiers.- Part IV: Advanced Topics.- Beyond Sparsity.- Appendix A: Mathematics.- Appendix B: Computer Programming Resources for Sparse Recovery Approaches.- Appendix C: The source Code of Sparsity Induced Similarity.- Appendix D: Derivations.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781447172512
    • Anzahl Seiten 272
    • Lesemotiv Verstehen
    • Genre Software
    • Auflage Softcover reprint of the original 1st edition 2015
    • Sprache Englisch
    • Herausgeber Springer London
    • Gewicht 417g
    • Untertitel Theory, Algorithms and Applications
    • Größe H235mm x B155mm x T15mm
    • Jahr 2016
    • EAN 9781447172512
    • Format Kartonierter Einband
    • ISBN 1447172515
    • Veröffentlichung 09.10.2016
    • Titel Sparse Representation, Modeling and Learning in Visual Recognition
    • Autor Hong Cheng

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38