Sparse Signal Representation for a single-image Super Resolution

CHF 47.55
Auf Lager
SKU
33TVGLKKJ0J
Stock 1 Verfügbar
Geliefert zwischen Mo., 23.02.2026 und Di., 24.02.2026

Details

Many effective approaches designed to solve ill-posed and ill-conditioned problem had deficiencies to fulfill the needs of point spread function (PSF), which is hard to get into the practical situation all the time. So this project introduces a method called as Sparse signal representation for a single-image Super Resolution. The research on image Statistics gives a forward step to represent the image patches in a better way, as a sparse linear combination of elements, which are chosen from complete dictionary. From the coefficients of the sparse representation are utilized to construct the high-resolution output image. Here it trains two dictionaries jointly for the low-and high-resolution image patch, which produces two individual dictionary and it shows that the sparse representations for low- and high-resolution is same. To produce a high resolution image patch, the sparse representation can put together two trained dictionaries of the low- and the high-resolution image patch. A large amount of image patch pair are sampled here, by decreasing the computational cost significantly.

Autorentext

Author is a Renowned Researcher & Scientist Global with Patents in his name. He is an Academician, researcher, author, writer, inventor and innovator, Scientist (Consultant and speaker). Having experience as associate professor at KLECET engineering colleges. After he is pursuing Doctoral Fellowship (PDF) from Lincoln University College, Malaysia.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786202803175
    • Genre Thermal Engineering
    • Anzahl Seiten 52
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm
    • Jahr 2020
    • EAN 9786202803175
    • Format Kartonierter Einband
    • ISBN 978-620-2-80317-5
    • Veröffentlichung 06.10.2020
    • Titel Sparse Signal Representation for a single-image Super Resolution
    • Autor Dr. Jagannath Jadhav , Prof.Amruta Jadhav
    • Untertitel The research on image Statistics gives a forward step to represent the image patch in a better way
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38