Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Spectral Information Dynamics in Network Neuroscience and Physiology
Details
This book introduces a unified framework that integrates various data-driven information dynamics approaches to quantify node-specific, pairwise, and high-order interactions within complex systems in the contexts of network neuroscience and network physiology. Using measures of information rate, a hierarchical organization of interactions is established to describe the dynamics of individual nodes, connections between pairs, and redundant or synergistic relationships among groups of nodes. Initially defined in the time domain, these measures are extended to the spectral domain, enabling frequency-specific analysis under the Gaussian assumption and linear parametric models. The framework is validated on simulated network systems and applied to real-world multivariate time series in neuroscience and physiology. The spectral high-order information measures successfully reveal respiratory-driven redundancy in cardiovascular, cardiorespiratory, and cerebrovascular systems, and uncover a predominance of redundancy in high-order brain interactions, alongside the emergence of synergistic circuits not captured by pairwise analysis. These results emphasize the importance of high-order, frequency-resolved information measures in characterizing complex network dynamics and provide new insights into the coordinated functioning of physiological and neural systems.
Demonstrates that signal processing offers powerful tools for data-driven modeling of complex network systems Examines in a coherent framework different approaches for the analysis of multi-order interactions in network systems Highlights cutting-edge research in the field of network science, and showcases a multitude of applications
Inhalt
Introduction.- Linear Modelling of Stochastic Interactions.- Static Networks of Random Variables.- Dynamic Networks of Random Processes.- Applications to Physiological Networks.- Applications to Brain Networks.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783032054159
- Anzahl Seiten 243
- Lesemotiv Verstehen
- Genre Technology
- Sprache Englisch
- Herausgeber Springer-Verlag GmbH
- Gewicht 508g
- Untertitel Studies in Computational Intelligence 1235
- Größe H17mm x B155mm x T235mm
- Jahr 2026
- EAN 9783032054159
- Format Fester Einband
- ISBN 978-3-032-05415-9
- Titel Spectral Information Dynamics in Network Neuroscience and Physiology
- Autor Laura Sparacino