Spectrum of a C -algebra

CHF 43.15
Auf Lager
SKU
M110ULVE8K7
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

High Quality Content by WIKIPEDIA articles! The spectrum of a C -algebra or dual of a C -algebra A, denoted Â, is the set of unitary equivalence classes of irreducible -representations of A. A -representation of A on a Hilbert space H is irreducible if, and only if, there is no closed subspace K different from H and {0} which is invariant under all operators (x) with x A. We implicitly assume that irreducible representation means non-null irreducible representation, thus excluding trivial (i.e. identically 0) representations on one-dimensional spaces. As explained below, the spectrum  is also naturally a topological space; this generalizes the notion of the spectrum of a ring.

Klappentext

High Quality Content by WIKIPEDIA articles! The spectrum of a C-algebra or dual of a C-algebra A, denoted Â, is the set of unitary equivalence classes of irreducible -representations of A. A -representation p of A on a Hilbert space H is irreducible if, and only if, there is no closed subspace K different from H and {0} which is invariant under all operators p(x) with x A. We implicitly assume that irreducible representation means non-null irreducible representation, thus excluding trivial (i.e. identically 0) representations on one-dimensional spaces. As explained below, the spectrum  is also naturally a topological space; this generalizes the notion of the spectrum of a ring.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130347918
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B150mm x T5mm
    • Jahr 2010
    • EAN 9786130347918
    • Format Kartonierter Einband
    • ISBN 978-613-0-34791-8
    • Titel Spectrum of a C -algebra
    • Untertitel C*-Algebra, Unitary Equivalence, Hilbert Space, Topological Space, Simple Module, Spectrum of a Ring, Locally Compact Group, Plancherel Theorem
    • Gewicht 137g
    • Herausgeber VDM Verlag Dr. Müller e.K.
    • Anzahl Seiten 80
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38