Speech Recognition Using Articulatory and Excitation Source Features

CHF 66.35
Auf Lager
SKU
6DHGJ60M439
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book discusses the contribution of articulatory and excitation source information in discriminating sound units. The authors focus on excitation source component of speech -- and the dynamics of various articulators during speech production -- for enhancement of speech recognition (SR) performance. Speech recognition is analyzed for read, extempore, and conversation modes of speech. Five groups of articulatory features (AFs) are explored for speech recognition, in addition to conventional spectral features. Each chapter provides the motivation for exploring the specific feature for SR task, discusses the methods to extract those features, and finally suggests appropriate models to capture the sound unit specific knowledge from the proposed features. The authors close by discussing various combinations of spectral, articulatory and source features, and the desired models to enhance the performance of SR systems.

Focuses on articulatory features and various groups present within the general AFs Proposes robust signal processing methods for extracting the excitation source features from LP residual signal Discusses various mapping functions for extracting the AFs from spectral features and appropriate non-linear models for realizing the accurate mapping functions for the shape of vocal tract to movements of articulators Includes supplementary material: sn.pub/extras

Autorentext

K. Sreenivasa Rao is an Associate Professor at IIT Kharagpur. He has published seven books with Springer. He published 55 Journal publications, 25 book chapters and 115 conference publications.


Inhalt
Introduction.- Literature Review.- Articulatory Features for Phone Recognition.- Excitation Source Features for Phone Recognition.- Articulatory and Excitation Source Features for Speech Recognition in Read, Extempore and Conversation Modes.- Conclusion.- Appendix A: MFCC Features.- Appendix B: Pattern Recognition Models.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319492193
    • Lesemotiv Verstehen
    • Genre Electrical Engineering
    • Auflage 1st ed. 2017
    • Sprache Englisch
    • Anzahl Seiten 92
    • Herausgeber Springer-Verlag GmbH
    • Größe H235mm x B155mm
    • Jahr 2017
    • EAN 9783319492193
    • Format Kartonierter Einband
    • ISBN 978-3-319-49219-3
    • Veröffentlichung 18.01.2017
    • Titel Speech Recognition Using Articulatory and Excitation Source Features
    • Autor K. Sreenivasa Rao , Manjunath K E
    • Untertitel SpringerBriefs in Speech Technology
    • Gewicht 1708g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470