Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Spherical Radial Basis Functions, Theory and Applications
Details
This book is the first to be devoted to the theory and applications of spherical (radial) basis functions (SBFs), which is rapidly emerging as one of the most promising techniques for solving problems where approximations are needed on the surface of a sphere. The aim of the book is to provide enough theoretical and practical details for the reader to be able to implement the SBF methods to solve real world problems. The authors stress the close connection between the theory of SBFs and that of the more well-known family of radial basis functions (RBFs), which are well-established tools for solving approximation theory problems on more general domains. The unique solvability of the SBF interpolation method for data fitting problems is established and an in-depth investigation of its accuracy is provided. Two chapters are devoted to partial differential equations (PDEs). One deals with the practical implementation of an SBF-based solution to an elliptic PDE and another which describes an SBF approach for solving a parabolic time-dependent PDE, complete with error analysis. The theory developed is illuminated with numerical experiments throughout.
Spherical Radial Basis Functions, Theory and Applications will be of interest to graduate students and researchers in mathematics and related fields such as the geophysical sciences and statistics.
A customised review of spherical mathematics from functional analysis and differential geometry Studies technical error analysis of the SBF method in a friendly, readable style Both practical and theoretical issues are covered Includes supplementary material: sn.pub/extras
Inhalt
Motivation and Background Functional Analysis.- The Spherical Basis Function Method.- Error Bounds via Duchon's Technique.- Radial Basis Functions for the Sphere.- Fast Iterative Solvers for PDEs on Spheres.- Parabolic PDEs on Spheres.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319179384
- Sprache Englisch
- Auflage 2015
- Größe H235mm x B155mm x T9mm
- Jahr 2015
- EAN 9783319179384
- Format Kartonierter Einband
- ISBN 3319179381
- Veröffentlichung 27.05.2015
- Titel Spherical Radial Basis Functions, Theory and Applications
- Autor Simon Hubbert , Tanya M. Morton , Quôc Thông Le Gia
- Untertitel SpringerBriefs in Mathematics
- Gewicht 276g
- Herausgeber Springer International Publishing
- Anzahl Seiten 156
- Lesemotiv Verstehen
- Genre Mathematik