Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Spherical Tube Hypersurfaces
Details
We consider Levi non-degenerate tube hypersurfaces in complex linear space which are "spherical", that is, locally CR-equivalent to the real hyperquadric. Spherical hypersurfaces are characterized by the condition of the vanishing of the CR-curvature form, so such hypersurfaces are flat from the CR-geometric viewpoint. On the other hand, such hypersurfaces are of interest from the point of view of affine geometry. Thus our treatment of spherical tube hypersurfaces in this book is two-fold: CR-geometric and affine-geometric. Spherical tube hypersurfaces turn out to possess remarkable properties. For example, every such hypersurface is real-analytic and extends to a closed real-analytic spherical tube hypersurface in complex space. One of our main goals is to give an explicit affine classification of closed spherical tube hypersurfaces whenever possible. In this book we offer a comprehensive exposition of the theory of spherical tube hypersurfaces starting with the idea proposed in the pioneering work by P. Yang (1982) and ending with the new approach due to G. Fels and W. Kaup (2009).
This is a research monograph which is quite unique in a number of ways However, it is hard to state the main features of the book briefly for non-experts As a result, I am afraid I cannot come up with simple selling points that would be understood by the general reader and even by mathematicians who are not experts in the area of several complex variables Includes supplementary material: sn.pub/extras
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642197826
- Sprache Englisch
- Auflage 2011
- Größe H235mm x B155mm x T13mm
- Jahr 2011
- EAN 9783642197826
- Format Kartonierter Einband
- ISBN 3642197825
- Veröffentlichung 31.03.2011
- Titel Spherical Tube Hypersurfaces
- Autor Alexander Isaev
- Untertitel Lecture Notes in Mathematics 2020
- Gewicht 365g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 236
- Lesemotiv Verstehen
- Genre Mathematik