Spigot Algorithm

CHF 56.30
Auf Lager
SKU
P1LO884DL5S
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

High Quality Content by WIKIPEDIA articles! A spigot algorithm is an algorithm used to compute the value of a mathematical constant such as or e. Unlike recursive algorithms, a spigot algorithm yields digits incrementally without using previously computed digits. The Bailey-Borwein-Plouffe formula for the binary digits of is an example of a spigot algorithm. This example illustrates the working of a spigot algorithm by calculating the binary digits of the natural logarithm of 2 (sequence A068426 in OEIS) using the identity ln(2)=sum{k=1}^{infty}frac{1}{k2^k}, . To start calculating binary digits from, say, the 8th place we multiply this identity by 27: 2^7ln(2) =2^7sum{k=1}^{infty}frac{1}{k2^k}, . We then divide the infinite sum into a "head", in which the exponents of 2 are greater than or equal to zero, and a "tail", in which the exponents of 2 are negative: 2^7ln(2) =sum{k=1}^{7}frac{2^{7-k}}{k}+sum{k=8}^{infty}frac{1}{k2^{k-7}}, . We are only interested in the fractional part of this value, so we can replace each of the terms in the "head" by frac{2^{7-k} mod k}{k}, .

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131189302
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131189302
    • Format Fachbuch
    • Titel Spigot Algorithm
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 144
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38