Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Spigot Algorithm
CHF 56.30
Auf Lager
SKU
P1LO884DL5S
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026
Details
High Quality Content by WIKIPEDIA articles! A spigot algorithm is an algorithm used to compute the value of a mathematical constant such as or e. Unlike recursive algorithms, a spigot algorithm yields digits incrementally without using previously computed digits. The Bailey-Borwein-Plouffe formula for the binary digits of is an example of a spigot algorithm. This example illustrates the working of a spigot algorithm by calculating the binary digits of the natural logarithm of 2 (sequence A068426 in OEIS) using the identity ln(2)=sum{k=1}^{infty}frac{1}{k2^k}, . To start calculating binary digits from, say, the 8th place we multiply this identity by 27: 2^7ln(2) =2^7sum{k=1}^{infty}frac{1}{k2^k}, . We then divide the infinite sum into a "head", in which the exponents of 2 are greater than or equal to zero, and a "tail", in which the exponents of 2 are negative: 2^7ln(2) =sum{k=1}^{7}frac{2^{7-k}}{k}+sum{k=8}^{infty}frac{1}{k2^{k-7}}, . We are only interested in the fractional part of this value, so we can replace each of the terms in the "head" by frac{2^{7-k} mod k}{k}, .
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131189302
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131189302
- Format Fachbuch
- Titel Spigot Algorithm
- Herausgeber Betascript Publishing
- Anzahl Seiten 144
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung