Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Split-radix FFT Algorithm
CHF 42.65
Auf Lager
SKU
DB95UTF8B6M
Geliefert zwischen Fr., 06.02.2026 und Mo., 09.02.2026
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. The split-radix FFT is a fast Fourier transform (FFT) algorithm for computing the discrete Fourier transform (DFT), and was first described in an initially little-appreciated paper by R. Yavne (1968) and subsequently rediscovered simultaneously by various authors in 1984. (The name "split radix" was coined by two of these reinventors, P. Duhamel and H. Hollmann.) In particular, split radix is a variant of the Cooley-Tukey FFT algorithm that uses a blend of radices 2 and 4: it recursively expresses a DFT of length N in terms of one smaller DFT of length N/2 and two smaller DFTs of length N/4. The split-radix FFT, along with its variations, long had the distinction of achieving the lowest published arithmetic operation count (total exact number of required real additions and multiplications) to compute a DFT of power-of-two sizes N. The arithmetic count of the original split-radix algorithm was improved upon in 2004 (with the initial gains made in unpublished work by J. Van Buskirk via hand optimization for N=64), but it turns out that one can still achieve the new lowest count by a modification of split radix (Johnson and Frigo, 2007).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131227424
- Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
- Größe H5mm x B220mm x T150mm
- EAN 9786131227424
- Format Fachbuch
- Titel Split-radix FFT Algorithm
- Gewicht 124g
- Herausgeber Betascript Publishing
- Anzahl Seiten 80
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung