Spray (Mathematics)

CHF 42.80
Auf Lager
SKU
H2I3A2F2FF6
Stock 1 Verfügbar
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026

Details

High Quality Content by WIKIPEDIA articles! In differential geometry, a spray is a type of vector field defined on the tangent bundle of a manifold. Sprays arise naturally in Riemannian and Finsler geometry as the geodesic spray whose integral curves are precisely all geodesics as Hamiltonian flows. More generally, sprays geometrically encode quadratic quasilinear second-order ordinary differential equations on a manifold, the geodesic equation of a Riemannian or Finsler manifold being one special case of this. A spray may also be associated to any affine connection on a differentiable manifold. A spray may only be defined or regular on part of the tangent bundle: the Finsler spray is defined on the deleted tangent bundle TM {0}. By contrast, sprays that are regular in a neighborhood of zero have well-behaved exponential maps associated with them, and accordingly a system of local normal coordinates around each point. Let M be a differentiable manifold. Then a spray W on M is a differentiable vector field on the tangent bundle TM (that is, a section of the double tangent bundle TTM).

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131229411
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131229411
    • Format Fachbuch
    • Titel Spray (Mathematics)
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 88
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38