Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Spray (Mathematics)
CHF 42.80
Auf Lager
SKU
H2I3A2F2FF6
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026
Details
High Quality Content by WIKIPEDIA articles! In differential geometry, a spray is a type of vector field defined on the tangent bundle of a manifold. Sprays arise naturally in Riemannian and Finsler geometry as the geodesic spray whose integral curves are precisely all geodesics as Hamiltonian flows. More generally, sprays geometrically encode quadratic quasilinear second-order ordinary differential equations on a manifold, the geodesic equation of a Riemannian or Finsler manifold being one special case of this. A spray may also be associated to any affine connection on a differentiable manifold. A spray may only be defined or regular on part of the tangent bundle: the Finsler spray is defined on the deleted tangent bundle TM {0}. By contrast, sprays that are regular in a neighborhood of zero have well-behaved exponential maps associated with them, and accordingly a system of local normal coordinates around each point. Let M be a differentiable manifold. Then a spray W on M is a differentiable vector field on the tangent bundle TM (that is, a section of the double tangent bundle TTM).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131229411
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131229411
- Format Fachbuch
- Titel Spray (Mathematics)
- Herausgeber Betascript Publishing
- Anzahl Seiten 88
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung