Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Stability of Neutral Functional Differential Equations
Details
In this monograph the author presents explicit conditions for the exponential, absolute and input-to-state stabilities including solution estimates of certain types of functional differential equations.
The main methodology used is based on a combination of recent norm estimates for matrix-valued functions, comprising the generalized Bohl-Perron principle, together with its integral version and the positivity of fundamental solutions. A significant part of the book is especially devoted to the solution of the generalized Aizerman problem.
Gives an approach based on estimates for matrix-valued functions which allows the investigation of various classes of equations from a unified viewpoint Provides the reader with a solution of the generalized Aizerman problem for NDEs Explains to the reader the generalized Bohl-Perron principle for neutral type systems and its integral version Gives explicit stability conditions for semilinear equations with linear neutral type parts and nonlinear causal mappings Includes supplementary material: sn.pub/extras
Inhalt
Preliminaries.- Eigenvalues and Functions of Matrices.- Difference Equations with Continuous Time.- Linear Differential Delay Equations.- Linear Autonomous NDEs.- Linear Time-variant NDEs.- Nonlinear Vector NDEs.- Absolute Stability of Scalar NDEs.- Bounds for Characteristic Values of NDEs.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789462390904
- Sprache Englisch
- Auflage 2014
- Größe H241mm x B160mm x T23mm
- Jahr 2014
- EAN 9789462390904
- Format Fester Einband
- ISBN 9462390908
- Veröffentlichung 24.10.2014
- Titel Stability of Neutral Functional Differential Equations
- Autor Michael I. Gil'
- Untertitel Atlantis Studies in Differential Equations 3
- Gewicht 647g
- Herausgeber Atlantis Press
- Anzahl Seiten 320
- Lesemotiv Verstehen
- Genre Mathematik