Statistical Modeling and Simulation for Experimental Design and Machine Learning Applications

CHF 269.10
Auf Lager
SKU
UNOQKTIKNER
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

This volume presents a selection of articles on statistical modeling and simulation, with a focus on different aspects of statistical estimation and testing problems, the design of experiments, reliability and queueing theory, inventory analysis, and the interplay between statistical inference, machine learning methods and related applications. The refereed contributions originate from the 10th International Workshop on Simulation and Statistics, SimStat 2019, which was held in Salzburg, Austria, September 26, 2019, and were either presented at the conference or developed afterwards, relating closely to the topics of the workshop. The book is intended for statisticians and Ph.D. students who seek current developments and applications in the field.

Presents current developments in statistical modeling and simulation Focuses on experimental design and machine learning applications Features invited contributions

Autorentext

Jürgen Pilz is Professor Emeritus at the Department of Statistics at the Alpen-Adria University Klagenfurt in Austria. His research areas include Bayesian statistics, spatial statistics, environmental and industrial statistics, statistical quality control and design of experiments.Viatcheslav B. Melas is a Professor at the Department of Stochastic Simulation at the St. Petersburg State University, Russia. His research areas include experimental design, stochastic simulation and regression analysis, with a focus on functional approaches to optimal experimental design.

Arne Bathke is Full Professor of Statistics at the Paris Lodron University Salzburg, Austria. His main research interests are related to nonparametric and multivariate statistics applied in different fields, from social sciences to biomedicine and engineering.


Inhalt
- Part I Invited Papers. - 1. Likelihood Ratios in Forensics: What They Are and What They Are Not. - 2. MANOVA for Large Number of Treatments. - 3. Pollutant Dispersion Simulation by Means of a Stochastic Particle Model and a Dynamic Gaussian Plume Model. - 4. On an Alternative Trigonometric Strategy for Statistical Modeling. - Part II Design of Experiments. - 5. Incremental Construction of Nested Designs Based on Two-Level Fractional Factorial Designs. - 6. A Study of L -Optimal Designs for the Two-Dimensional Exponential Model. - 7. Testing for Randomized Block Single-Case Designs by Combined Permutation Tests with Multivariate Mixed Data. - 8. Adaptive Design Criteria Motivated by a Plug-In Percentile Estimator. - Part III Queueing and Inventory Analysis. - 9. On a Parametric Estimation for a Convolution of Exponential Densities. - 10. Statistical Estimation with a Known Quantile and Its Application in a Modified ABC-XYZ Analysis. - Part IV Machine Learning and Applications. - 11. A Study of Design of Experiments and Machine Learning Methods to Improve Fault Detection Algorithms. - 12. Microstructure Image Segmentation Using Patch-Based Clustering Approach. - 13. Clustering and Symptom Analysis in Binary Data with Application. - 14. Big Data for Credit Risk Analysis: Efficient Machine Learning Models Using PySpark.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031400544
    • Lesemotiv Verstehen
    • Genre Maths
    • Editor Jürgen Pilz, Viatcheslav B. Melas, Arne Bathke
    • Anzahl Seiten 276
    • Herausgeber Springer
    • Größe H241mm x B160mm x T21mm
    • Jahr 2023
    • EAN 9783031400544
    • Format Fester Einband
    • ISBN 3031400542
    • Veröffentlichung 20.10.2023
    • Titel Statistical Modeling and Simulation for Experimental Design and Machine Learning Applications
    • Untertitel Selected Contributions from SimStat 2019 and Invited Papers
    • Gewicht 582g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38