Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Stewart Walker Lemma
CHF 43.15
Auf Lager
SKU
4F573SQARLR
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. The Stewart Walker lemma provides necessary and sufficient conditions for the linear perturbation of a tensor field to be gauge-invariant. T = 0 if and only if one of the following holds 1. T0 = 0 2. T0 is a constant scalar field 3. T0 is a linear combination of products of delta functions delta{a}^{b}. A 1-parameter family of manifolds denoted by mathcal{M}{epsilon} with mathcal{M}{0} = mathcal{M}^{4} has metric gik = ik + hik. These manifolds can be put together to form a 5-manifold mathcal{N}. A smooth curve can be constructed through mathcal{N} with tangent 5-vector X, transverse to mathcal{M}{epsilon}. If X is defined so that if ht is the family of 1-parameter maps which map mathcal{N} to mathcal{N} and p{0} in mathcal{M}{0} then a point p{epsilon} in mathcal{M}{epsilon} can be written as h (p0). This also defines a pull back h{epsilon}^{ } that maps a tensor field T{epsilon} in mathcal{M}{epsilon} back onto mathcal{M}{0}.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131212741
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Größe H220mm x B220mm
- EAN 9786131212741
- Format Fachbuch
- Titel Stewart Walker Lemma
- Herausgeber Betascript Publishing
- Anzahl Seiten 80
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung