Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
STOCHASTIC AND COPULA MODELS FOR CREDIT DERIVATIVES
Details
We prove results relating to the exit time of a stochastic process from a region in N-dimensional space. We compute certain stochastic integrals involving the exit time. Taking a Gaussian copula model for the hitting time behavior, We derive explicit formulas for CDO tranche sensitivity to parameter variations, and prove results concerning the qualitative behavior of such tranche sensitivities, as well as the large-N behavior, for a homogeneous portfolio governed by the one-factor Gaussian copula. A Poisson-mixture model is also investigated in a similar vein. Relevant simulations are presented.
Autorentext
Chao Meng expects his M.Eng. in Financial Engineering in Dec. 2009 in Cornell University. He also holds a Ph.D. in mathematics from Louisiana State University (LSU) and bachelor's degree in mathematics from University of Sci. & Tech. of China (USTC). His research has been focused on stochastic analysis with applications in finance.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639212570
- Sprache Englisch
- Größe H220mm x B150mm x T6mm
- Jahr 2010
- EAN 9783639212570
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-21257-0
- Titel STOCHASTIC AND COPULA MODELS FOR CREDIT DERIVATIVES
- Autor Chao Meng
- Untertitel RESULTS OF CDO TRANCHE SENSITIVITIES IN THE GAUSSIAN COPULA MODEL
- Gewicht 167g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 100
- Genre Mathematik