Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Stokes' Theorem
CHF 57.10
Auf Lager
SKU
8V11H6NUHVK
Geliefert zwischen Di., 27.01.2026 und Mi., 28.01.2026
Details
High Quality Content by WIKIPEDIA articles! In differential geometry, Stokes' theorem (also called the generalized Stokes' theorem) is a statement about the integration of differential forms on manifolds, which generalizes several theorems from vector calculus. William Thomson first discovered the result and communicated it to George Stokes in July 1850. Stokes set the theorem as a question on the 1854 Smith's Prize exam, which led to the result bearing his name. The theorem is often used in situations where is an embedded oriented submanifold of some bigger manifold on which the form is defined. A proof becomes particularly simple if the submanifold is a so-called "normal manifold", as in the figure on the r.h.s., which can be segmented into vertical stripes (e.g. parallel to the xn direction), such that after a partial integration concerning this variable, nontrivial contributions come only from the upper and lower boundary surfaces (coloured in yellow and red, repectively), where the complementary mutual orientations are visible through the arrows.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131124839
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131124839
- Format Fachbuch
- Titel Stokes' Theorem
- Herausgeber Betascript Publishing
- Anzahl Seiten 144
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung