Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Strong Generating Set
CHF 43.15
Auf Lager
SKU
P39VU09I3V6
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In abstract algebra, especially in the area of group theory, a strong generating set of a permutation group is a generating set that clearly exhibits the permutation structure as described by a stabilizer chain. A stabilizer chain is a sequence of subgroups, each containing the next and each stabilizing one more point. Let G leq Sn be a permutation group. Let B = (beta1, beta2, ldots, betar) be a sequence of distinct integers, betai in { 1, 2, ldots, n } , such that the pointwise stabilizer of B is trivial (ie: let B be a base for G). Define Bi = (beta1, beta2, ldots, beta_i),, and define G(i) to be the pointwise stabilizer of Bi. A strong generating set (SGS) for G relative to the base B is a set S subset G such that langle S cap G^{(i)} rangle = G^{(i)} for each 1 leq i leq r . The base and the SGS are said to be non-redundant if G^{(i)} neq G^{(j)} for i neq j . A base and strong generating set (BSGS) for a group can be computed using the Schreier Sims algorithm.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131234569
- Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
- Größe H220mm x B220mm
- EAN 9786131234569
- Format Fachbuch
- Titel Strong Generating Set
- Herausgeber Betascript Publishing
- Anzahl Seiten 92
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung