Strong Generating Set

CHF 43.15
Auf Lager
SKU
P39VU09I3V6
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In abstract algebra, especially in the area of group theory, a strong generating set of a permutation group is a generating set that clearly exhibits the permutation structure as described by a stabilizer chain. A stabilizer chain is a sequence of subgroups, each containing the next and each stabilizing one more point. Let G leq Sn be a permutation group. Let B = (beta1, beta2, ldots, betar) be a sequence of distinct integers, betai in { 1, 2, ldots, n } , such that the pointwise stabilizer of B is trivial (ie: let B be a base for G). Define Bi = (beta1, beta2, ldots, beta_i),, and define G(i) to be the pointwise stabilizer of Bi. A strong generating set (SGS) for G relative to the base B is a set S subset G such that langle S cap G^{(i)} rangle = G^{(i)} for each 1 leq i leq r . The base and the SGS are said to be non-redundant if G^{(i)} neq G^{(j)} for i neq j . A base and strong generating set (BSGS) for a group can be computed using the Schreier Sims algorithm.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131234569
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131234569
    • Format Fachbuch
    • Titel Strong Generating Set
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 92
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38