Structural Pattern Recognition with Graph Edit Distance

CHF 137.60
Auf Lager
SKU
EP35DE2C72K
Stock 1 Verfügbar
Geliefert zwischen Mi., 24.12.2025 und Do., 25.12.2025

Details

This unique text/reference presents a thorough introduction to the field of structural pattern recognition, with a particular focus on graph edit distance (GED). The book also provides a detailed review of a diverse selection of novel methods related to GED, and concludes by suggesting possible avenues for future research. Topics and features: formally introduces the concept of GED, and highlights the basic properties of this graph matching paradigm; describes a reformulation of GED to a quadratic assignment problem; illustrates how the quadratic assignment problem of GED can be reduced to a linear sum assignment problem; reviews strategies for reducing both the overestimation of the true edit distance and the matching time in the approximation framework; examines the improvement demonstrated by the described algorithmic framework with respect to the distance accuracy and the matching time; includes appendices listing the datasets employed for the experimental evaluations discussedin the book.



Provides a thorough introduction to the concept of graph edit distance (GED) Describes a selection of diverse GED algorithms with step-by-step examples Presents a unique overview of recent pattern recognition applications based on GED Includes several novel and significant extensions of GED, with a special focus on fast approximation algorithms for GED Includes supplementary material: sn.pub/extras

Autorentext

Dr. Kaspar Riesen is a university lecturer of computer science in the Institute for Information Systems at the University of Applied Sciences and Arts Northwestern Switzerland, Olten, Switzerland.



Inhalt

Part I: Foundations and Applications of Graph Edit Distance.- Introduction and Basic Concepts.- Graph Edit Distance.- Bipartite Graph Edit Distance.- Part II: Recent Developments and Research on Graph Edit Distance.- Improving the Distance Accuracy of Bipartite Graph Edit Distance.- Learning Exact Graph Edit Distance.- Speeding Up Bipartite Graph Edit Distance.- Conclusions and Future Work.- Appendix A: Experimental Evaluation of Sorted Beam Search.- Appendix B: Data Sets.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319272511
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 172
    • Lesemotiv Verstehen
    • Genre Software
    • Auflage 1st edition 2015
    • Sprache Englisch
    • Gewicht 430g
    • Untertitel Approximation Algorithms and Applications
    • Autor Kaspar Riesen
    • Größe H241mm x B160mm x T16mm
    • Jahr 2016
    • EAN 9783319272511
    • Format Fester Einband
    • ISBN 3319272519
    • Veröffentlichung 08.02.2016
    • Titel Structural Pattern Recognition with Graph Edit Distance

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470