Structurally Unstable Quadratic Vector Fields of Codimension One
Details
Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors' work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them.
Follows a similar work on structurally stable systems Proves that there are at most 211 and at least 204 structurally unstable codimension one topologically different phase portraits in the Poincaré disc modulo limit cycles Gives an overview on recent research in the area
Inhalt
Introduction.- Preliminary definitions.- Some preliminary tools.- A summary for the structurally stable quadratic vector fields.- Proof of Theorem 1.1(a).- Proof of Theorem 1.1(b).- Bibliography.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319921167
- Sprache Englisch
- Auflage 1st edition 2018
- Größe H235mm x B155mm x T16mm
- Jahr 2018
- EAN 9783319921167
- Format Kartonierter Einband
- ISBN 3319921169
- Veröffentlichung 06.07.2018
- Titel Structurally Unstable Quadratic Vector Fields of Codimension One
- Autor Joan C. Artés , Alex C. Rezende , Jaume Llibre
- Gewicht 423g
- Herausgeber Springer International Publishing
- Anzahl Seiten 276
- Lesemotiv Verstehen
- Genre Mathematik