Structure-Preserving Algorithms for Oscillatory Differential Equations

CHF 165.55
Auf Lager
SKU
DOMG743BJ7J
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book describes effective and efficient structure-preserving algorithms for second-order oscillatory differential equations by using theoretical analysis and numerical validation. Includes advances in ARKN, ERKN, Falkner-type and energy-preserving methods.

Structure-Preserving Algorithms for Oscillatory Differential Equations describes a large number of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations by using theoretical analysis and numerical validation. Structure-preserving algorithms for differential equations, especially for oscillatory differential equations, play an important role in the accurate simulation of oscillatory problems in applied sciences and engineering. The book discusses novel advances in the ARKN, ERKN, two-step ERKN, Falkner-type and energy-preserving methods, etc. for oscillatory differential equations.

The work is intended for scientists, engineers, teachers and students who are interested in structure-preserving algorithms for differential equations. Xinyuan Wu is a professor at Nanjing University; Xiong You is an associate professor at Nanjing Agricultural University; Bin Wang is a joint Ph.D student of Nanjing University and University of Cambridge.


Includes recent advances in the ARKN methods, ERKN methods, two-step ERKN methods, energy-preserving methods, etc. Focuses on new and important development of rooted-tree and B-series theories with applications in derivation of order conditions for new RKN-type methods Places emphasis on the structure-preserving properties and computational efficiency of newly developed integrators Includes supplementary material: sn.pub/extras

Inhalt

Runge-Kutta (-Nyström) Methods for Oscillatory Differential Equations.- ARKN Methods.- ERKN Methods.- Symplectic and Symmetric Multidimensional ERKN Methods.- Two-Step Multidimensional ERKN Methods.- Adapted Falkner-Type Methods.- Energy-Preserving ERKN Methods.- Effective Methods for Highly Oscillatory Second-Order Nonlinear Differential Equations.- Extended Leap-Frog Methods for Hamiltonian Wave Equations.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642353376
    • Auflage 2013
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H241mm x B160mm x T19mm
    • Jahr 2013
    • EAN 9783642353376
    • Format Fester Einband
    • ISBN 3642353371
    • Veröffentlichung 02.02.2013
    • Titel Structure-Preserving Algorithms for Oscillatory Differential Equations
    • Autor Xinyuan Wu , Bin Wang , Xiong You
    • Gewicht 547g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 252

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470