Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Subspace Methods for Pattern Recognition in Intelligent Environment
Details
This research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to extract core information or useful features is an important issue. Subspace methods are widely used for dimension reduction and feature extraction in pattern recognition. They transform a high-dimensional data to a lower-dimensional space (subspace), where most information is retained. The book covers a broad spectrum of subspace methods including linear, nonlinear and multilinear subspace learning methods and applications. The applications include face alignment, face recognition, medical image analysis, remote sensing image classification, traffic sign recognition, image clustering, super resolution, edge detection, multi-view facial image synthesis.
Latest research on the theoretical foundations and applications of subspace methods for pattern recognition using intelligent techniques
Inhalt
Active Shape Model and Its Application to Face Alignment.-Condition Relaxation in Conditional Statistical Shape Models.- Independent Component Analysis and Its Application to Classification of High-Resolution Remote Sensing Images.-Subspace Construction from Artificially Generated Images for Traffic Sign Recognition.-Local Structure Preserving based Subspace Analysis Methods and Applications.-Sparse Representation for Image Super-Resolution.-Sampling andRecovery of Continuously-Defined Sparse Signals and Its Applications.-Tensor-Based Subspace Learning for Multi-Pose Face Synthesis.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783662501900
- Genre Technology Encyclopedias
- Auflage Softcover reprint of the original 1st edition 2014
- Editor Lakhmi C. Jain, Yen-Wei Chen
- Lesemotiv Verstehen
- Anzahl Seiten 216
- Herausgeber Springer Berlin Heidelberg
- Größe H235mm x B155mm x T12mm
- Jahr 2016
- EAN 9783662501900
- Format Kartonierter Einband
- ISBN 3662501902
- Veröffentlichung 03.09.2016
- Titel Subspace Methods for Pattern Recognition in Intelligent Environment
- Untertitel Studies in Computational Intelligence 552
- Gewicht 335g
- Sprache Englisch