Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Support Vector Machines and Perceptrons
Details
This work reviews the state of the art in SVM and perceptron classifiers. A Support Vector Machine (SVM) is easily the most popular tool for dealing with a variety of machine-learning tasks, including classification. SVMs are associated with maximizing the margin between two classes. The concerned optimization problem is a convex optimization guaranteeing a globally optimal solution. The weight vector associated with SVM is obtained by a linear combination of some of the boundary and noisy vectors. Further, when the data are not linearly separable, tuning the coefficient of the regularization term becomes crucial. Even though SVMs have popularized the kernel trick, in most of the practical applications that are high-dimensional, linear SVMs are popularly used. The text examines applications to social and information networks. The work also discusses another popular linear classifier, the perceptron, and compares its performance with that of the SVM in different application areas.>
Presents a review of linear classifiers, with a focus on those based on linear discriminant functions Discusses the application of support vector machines (SVMs) in link prediction in social networks Describes the perceptron, another popular linear classifier, and compares its performance with that of the SVM in different application areas Includes supplementary material: sn.pub/extras
Autorentext
Dr. M. Narasimha Murty is a professor in the Department of Computer Science and Automation at the Indian Institute of Science, Bangalore.
Klappentext
>Inhalt
Introduction.- Linear Discriminant Function.- Perceptron.- Linear Support Vector Machines.- Kernel Based SVM.- Application to Social Networks.- Conclusion.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319410623
- Genre Information Technology
- Auflage 1st ed.
- Lesemotiv Verstehen
- Anzahl Seiten 95
- Größe H7mm x B155mm x T234mm
- Jahr 2016
- EAN 9783319410623
- Format Kartonierter Einband
- ISBN 978-3-319-41062-3
- Titel Support Vector Machines and Perceptrons
- Autor M. Narasimha Murty , Rashmi Raghava
- Untertitel Learning, Optimization, Classification, and Application to Social Networks
- Gewicht 188g
- Herausgeber Springer-Verlag GmbH
- Sprache Englisch