Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Swarm Intelligence for Multi-objective Problems in Data Mining
Details
The purpose of this book is to collect contributions that are at the intersection of multi-objective optimization, swarm intelligence (specifically, particle swarm optimization and ant colony optimization) and data mining.
Presents recent results on Swarm Intelligence for Multi-objective Problems in Data Mining
Inhalt
An Introduction to Swarm Intelligence for Multi-objective Problems.- Multi-Criteria Ant Feature Selection Using Fuzzy Classifiers.- Multiobjective Particle Swarm Optimization in Classification-Rule Learning.- Using Multi-Objective Particle Swarm Optimization for Designing Novel Classifiers.- Optimizing Decision Trees Using Multi-objective Particle Swarm Optimization.- A Discrete Particle Swarm for Multi-objective Problems in Polynomial Neural Networks used for Classification: A Data Mining Perspective.- Rigorous Runtime Analysis of Swarm Intelligence Algorithms An Overview.- Mining Rules: A Parallel Multiobjective Particle Swarm Optimization Approach.- The Basic Principles of Metric Indexing.- Particle Evolutionary Swarm Multi-Objective Optimization for Vehicle Routing Problem with Time Windows.- Combining Correlated Data from Multiple Classifiers.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642260537
- Auflage 2010
- Editor Carlos Coello Coello, Susmita Ghosh, Satchidananda Dehuri
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T17mm
- Jahr 2012
- EAN 9783642260537
- Format Kartonierter Einband
- ISBN 3642260535
- Veröffentlichung 14.03.2012
- Titel Swarm Intelligence for Multi-objective Problems in Data Mining
- Untertitel Studies in Computational Intelligence 242
- Gewicht 464g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 304