Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Symmetric Spaces and the Kashiwara-Vergne Method
Details
Gathering and updating results scattered in journal articles over thirty years, this self-contained monograph gives a comprehensive introduction to the subject. Its goal is to: - motivate and explain the method for general Lie groups, reducing the proof of deep results in invariant analysis to the verification of two formal Lie bracket identities related to the Campbell-Hausdorff formula (the "Kashiwara-Vergne conjecture"); - give a detailed proof of the conjecture for quadratic and solvable Lie algebras, which is relatively elementary; - extend the method to symmetric spaces; here an obstruction appears, embodied in a single remarkable object called an "e-function"; - explain the role of this function in invariant analysis on symmetric spaces, its relation to invariant differential operators, mean value operators and spherical functions; - give an explicit e-function for rank one spaces (the hyperbolic spaces); - construct an e-function for general symmetric spaces, in the spirit of Kashiwara and Vergne's original work for Lie groups. The book includes a complete rewriting of several articles by the author, updated and improved following Alekseev, Meinrenken and Torossian's recent proofs of the conjecture. The chapters are largely independent of each other. Some open problems are suggested to encourage future research. It is aimed at graduate students and researchers with a basic knowledge of Lie theory.
The first introduction to the subject in a self-contained monograph Emphasizes motivations, and links with classical analysis on symmetric spaces Includes a list of open problems
Inhalt
Introduction.- Notation.- The Kashiwara-Vergne method for Lie groups.- Convolution on homogeneous spaces.- The role of e-functions.- e-functions and the Campbell Hausdorff formula.- Bibliography.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319097725
- Sprache Englisch
- Auflage 2014
- Größe H235mm x B155mm x T13mm
- Jahr 2014
- EAN 9783319097725
- Format Kartonierter Einband
- ISBN 3319097725
- Veröffentlichung 30.10.2014
- Titel Symmetric Spaces and the Kashiwara-Vergne Method
- Autor François Rouvière
- Untertitel Lecture Notes in Mathematics 2115
- Gewicht 341g
- Herausgeber Springer International Publishing
- Anzahl Seiten 220
- Lesemotiv Verstehen
- Genre Mathematik