Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Synchronization stability and robustness of Lattice Oscillators
Details
This book presents an important condition for stability and persistence of synchronized manifold of diffusively coupled oscillators of linear and planar simple Bravais lattices. This is done by considering n ( 2), d-dimensional oscillators each with an assymptoticaly stable limit cycle coupled by a nearest neighbour linear diffusive like path. In chapter two we review what has been done in relation to the three aspects; namely synchronization, stability and persistence of the synchronized manifold. In Chapter three, we state and prove a theorem that gives the conditions for stability and persistence of the synchronized state. Here we give the equations that describe the nature of dynamics of coupled oscillators and a detailed analysis where Invariant manifold Theory and Lyapunov exponents are used to establish the range of coupling strength for stability and robustness of synchronized state. The book is of great value to the fields of both Applied Mathematics and Statistics.
Autorentext
Titus K.Rotich has B.Ed and M.Sc in Applied Mathematics (Nairobi)and is currently pursuing Doctor of Philosophy in Mathematics (Applied Mathematics) (Moi).Silver Jeptoo Keny Rambaei has B.Sc and M.Sc (Kurukshetra, India) and is currently pursuing Doctor of Philosophy in Mathematics (Biostatistics) (Moi).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783848495689
- Sprache Englisch
- Auflage Aufl.
- Größe H220mm x B220mm
- Jahr 2012
- EAN 9783848495689
- Format Kartonierter Einband (Kt)
- ISBN 978-3-8484-9568-9
- Titel Synchronization stability and robustness of Lattice Oscillators
- Autor Titus Rotich , Silver Jeptoo Keny Rambaei
- Untertitel A case of diffusively coupled Lattice Oscillators
- Herausgeber LAP Lambert Academic Publishing
- Anzahl Seiten 72
- Genre Mathematik