Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Synthesis of neural network approaches used for ECG classification
Details
Cardiovascular diseases represent the most frequent cause of death in Europe. Consequently, their diagnoses appear a vital task. In cardiology unit, ECG signal still remains the dominant used tools for arrhythmia and heart diseases analysis. In fact, the ECG is a non-invasive tool to explore the functional heart sate. It is an electrical signal varying according to the electrical heart state. From the ECG signal, some significant parameters can be extracted. Generally, the durations and the shapes of the different waves are taken as bio-indicators of certain cardiac anomalies. In fact, manual detection and classification of ECG waves is a difficult and annoying task especially for the analysis of the long recordings as in Holters and ambulatory cases. Besides, a detailed analysis of 12-leads ECG used to identify the presence or the absence of the cardiac malfunction is also irritating. However, and due to large number of patients in intensive care units, the need for continuous heart activity monitoring is necessary requiring therefore the automatic analysis of the ECG signal.
Autorentext
Radhwane Benali received the engineering & the MSc degrees de in Biomedical electronics from the UABB University of Tlemcen, Algeria in 2005 & 2008, respectively. Currently, he is preparing a PHD at Tlemcen University & he is a member of Biomedical Engineering Laboratory.His area of research interests includes biomedical signal processing.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783847315070
- Sprache Englisch
- Auflage Aufl.
- Größe H220mm x B150mm x T4mm
- Jahr 2011
- EAN 9783847315070
- Format Kartonierter Einband
- ISBN 3847315072
- Veröffentlichung 13.12.2011
- Titel Synthesis of neural network approaches used for ECG classification
- Autor Benali Radhwane , Fethi Bereksi Reguig , Nabil Dib
- Untertitel Chapter Book
- Gewicht 113g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 64
- Genre Informatik