T(1) Theorem

CHF 42.60
Auf Lager
SKU
M3JPUA02TB2
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, the T(1) theorem, first proved by David & Journé (1984), describes when an operator T given by a kernel can be extended to a bounded linear operator on the Hilbert space L2(Rn). The name T(1) theorem refers to a condition on the distribution T(1), given by the operator T applied to the function 1. Suppose that T is a continuous operator from Schwartz functions on Rn to tempered distributions, so that T is given by a kernel K which is a distribution. Assume that the kernel is standard, which means that off the diagonal it is given by a function satisfying certain conditions. Then the T(1) theorem states that T can be extended to a bounded operator on the Hilbert space L2(Rn) if and only if the following conditions are satisfied: T(1) is of bounded mean oscillation (where T is extended to an operator on bounded smooth functions, such as 1). T (1) is of bounded mean oscillation, where T is the adjoint of T. T is weakly bounded, a weak condition that is easy to verify in practice.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131156915
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131156915
    • Format Fachbuch
    • Titel T(1) Theorem
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 80
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38