Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
T(1) Theorem
CHF 42.60
Auf Lager
SKU
M3JPUA02TB2
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026
Details
High Quality Content by WIKIPEDIA articles! In mathematics, the T(1) theorem, first proved by David & Journé (1984), describes when an operator T given by a kernel can be extended to a bounded linear operator on the Hilbert space L2(Rn). The name T(1) theorem refers to a condition on the distribution T(1), given by the operator T applied to the function 1. Suppose that T is a continuous operator from Schwartz functions on Rn to tempered distributions, so that T is given by a kernel K which is a distribution. Assume that the kernel is standard, which means that off the diagonal it is given by a function satisfying certain conditions. Then the T(1) theorem states that T can be extended to a bounded operator on the Hilbert space L2(Rn) if and only if the following conditions are satisfied: T(1) is of bounded mean oscillation (where T is extended to an operator on bounded smooth functions, such as 1). T (1) is of bounded mean oscillation, where T is the adjoint of T. T is weakly bounded, a weak condition that is easy to verify in practice.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131156915
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131156915
- Format Fachbuch
- Titel T(1) Theorem
- Herausgeber Betascript Publishing
- Anzahl Seiten 80
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung