Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
T1 Space
CHF 37.20
Auf Lager
SKU
42C9I8UNKEP
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
High Quality Content by WIKIPEDIA articles! In topology and related branches of mathematics, T1 spaces and R0 spaces are particular kinds of topological spaces. The T1 and R0 properties are examples of separation axioms. A T1 space is also called an accessible space or a Fréchet space and a R0 space is also called a symmetric space. (The term Fréchet space also has an entirely different meaning in functional analysis. For this reason, the term T1 space is preferred. There is also a notion of a Fréchet-Urysohn space as a type of sequential space. The term symmetric space has another meaning.) Let X be a topological space and let x and y be points in X. We say that x and y can be separated if each lies in an open set which does not contain the other point. X is a T1 space if any two distinct points in X can be separated. X is a R0 space if any two topologically distinguishable points in X can be separated.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131156120
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131156120
- Format Fachbuch
- Titel T1 Space
- Herausgeber Betascript Publishing
- Anzahl Seiten 72
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung