T1 Space

CHF 37.20
Auf Lager
SKU
42C9I8UNKEP
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

High Quality Content by WIKIPEDIA articles! In topology and related branches of mathematics, T1 spaces and R0 spaces are particular kinds of topological spaces. The T1 and R0 properties are examples of separation axioms. A T1 space is also called an accessible space or a Fréchet space and a R0 space is also called a symmetric space. (The term Fréchet space also has an entirely different meaning in functional analysis. For this reason, the term T1 space is preferred. There is also a notion of a Fréchet-Urysohn space as a type of sequential space. The term symmetric space has another meaning.) Let X be a topological space and let x and y be points in X. We say that x and y can be separated if each lies in an open set which does not contain the other point. X is a T1 space if any two distinct points in X can be separated. X is a R0 space if any two topologically distinguishable points in X can be separated.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131156120
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131156120
    • Format Fachbuch
    • Titel T1 Space
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 72
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38