Tangent and Cotangent Bundles, and Representations of Lie Groups

CHF 65.40
Auf Lager
SKU
GG75J43JHA9
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025

Details

We study the tangent and cotangent bundles of a Lie group G which are also Lie groups. Our main results are to show that on TG the canonical Jacobi endomorphism field S is parallel with respect to the canonical Lie group connection Lie group and that dually on the cotangent bundle of G the canonical symplectic form is parallel with respect to the canonical connection. We next prove some theorems for Lie algebra extensions in which we can obtain a group representation for the extended algebra from the representation of the lower dimensional algebra. We also determine the Lie algebra of the automorphism group of three well known Lie algebras. Finally we study the Hamilton-Jacobi separability of conformally flat metrics and find a metric, Lagrangian and geodesics for the solvable codimension one nilradical six dimensional Lie Algebras where one exists.

Autorentext

Received his PhD from the University of Toledo in 2006, and is now an Assistant Professor of Mathematics at Grand Valley State University. Other than Lie algebras, he is interested in the mathematics behind Byzantine music, and teaching with technology.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639166347
    • Sprache Englisch
    • Größe H6mm x B220mm x T150mm
    • Jahr 2009
    • EAN 9783639166347
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-16634-7
    • Titel Tangent and Cotangent Bundles, and Representations of Lie Groups
    • Autor Firas Hindeleh
    • Gewicht 155g
    • Herausgeber VDM Verlag
    • Anzahl Seiten 104
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.