Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Tangential Developable
CHF 56.30
Auf Lager
SKU
EKRJ1OMG7M5
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026
Details
High Quality Content by WIKIPEDIA articles! In the mathematical study of the differential geometry of surfaces, a tangential developable is a particular kind of developable surface obtained from a curve in Euclidean space as the surface swept out by the tangent lines to the curve. Such a surface is also the envelope of the tangent planes to the curve. With the exceptions of the plane, a cylinder, and a cone, every developable surface in three-dimensional Euclidean space is the tangential developable of a certain curve, the edge of regression. This curve is obtained by first developing the surface into the plane, and then considering the image in the plane of the generators of the ruling on the surface. The envelope of this family of lines is a plane curve whose inverse image under the development is the edge of regression. Intuitively, it is a curve along which the surface needs to be folded during the process of developing into the plane.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131156632
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131156632
- Format Fachbuch
- Titel Tangential Developable
- Herausgeber Betascript Publishing
- Anzahl Seiten 144
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung