Telugu Dialects Identification

CHF 95.55
Auf Lager
SKU
EF7088TMOO6
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Speech processing is the technique to process and analyze the speech spoken by human beings. The different speech processing techniques are speech coding, speech recognition, speaker verification, and speech identification. ASR is a method to recognize the content of speech uttered by a speaker. Speech identification is a technique to recognize the utterance of the speech that belongs to which language or dialect. Dialect identification is a subdomain in Language identification used to identify the dialects of speech of a particular language spoken by an unknown person. A dialect of a particular language is one form of language spoken in a particular region or environment of human beings where they live. Dialects are different from accents, grammar and pronunciation of the same language. Like other spoken languages, Telugu language (TL) is multiform of different dialects viz., Telangana, Costa Andhra, and Rayalaseema. To identify any language dialects, the standard database is very important. It is a very difficult task to implement a dialect identification system as there is no standard database for dialects and many variations in language.

Autorentext
Dr. S.Shivaprasad is working as Professor and HoD in the Department of CSE at Malla Reddy Engineering College, India. He obtained his Ph.D. degree from Kakatiya University, Warangal in 2021, M.Tech from SIT-JNTUH campus in 2013 and B.Tech from Kakatiya University, Warangal in 2010. He was more than 30 research papers and 12 years of experience.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber LAP LAMBERT Academic Publishing
    • Gewicht 274g
    • Untertitel Using Different Speech Processing Models
    • Autor Shivaprasad Satla , Sadanandam Manchala
    • Titel Telugu Dialects Identification
    • Veröffentlichung 25.10.2022
    • ISBN 6205496631
    • Format Kartonierter Einband
    • EAN 9786205496633
    • Jahr 2022
    • Größe H220mm x B150mm x T11mm
    • Anzahl Seiten 172
    • GTIN 09786205496633

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470