Textual Emotion Classification Using Deep Broad Learning

CHF 215.30
Auf Lager
SKU
OH96S11JSUK
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

In this book, the authors systematically and comprehensively discuss textual emotion classification by using deep broad learning. Since broad learning possesses certain advantages such as simple network structure, short training time and strong generalization ability, it is a new and promising framework for textual emotion classification in artificial intelligence. As a result, how to combine deep and broad learning has become a new trend of textual emotion classification, a booming topic in both academia and industry.

For a better understanding, both quantitative and qualitative results are present in figures, tables, or other suitable formats to give the readers the broad picture of this topic along with unique insights of common sense and technical details, and to pave a solid ground for their forthcoming research or industry applications. In a progressive manner, the readers will gain exclusive knowledge in textual emotion classification using deep broad learning and be inspired to further investigate this underexplored domain.

With no other similar book existing in the literature, the authors aim to make the book self-contained for newcomers, only a few prerequisites being expected from the readers. The book is meant as a reference for senior undergraduates, postgraduates, scientists and researchers interested to have a quick idea of the foundations and research progress of security and privacy in federated learning, and it can equally well be used as a textbook by lecturers, tutors, and undergraduates.


Gives a systematic and comprehensive survey of textual emotion classification by using deep and broad learning Introduces students, researchers and industrial engineers interested in NLP or emotion computing to this promising field Is self-contained, with only basic knowledge in machine learning, pre-training models or deep learning being required

Autorentext

Prof. Sancheng Peng is a Professor at the Laboratory of Language Engineering and Computing, Guangdong University of Foreign Studies, Guangzhou, China. Prof. Peng's research interests include Natural Language Processing, Emotion Computing, Social Computing, and Trusted Computing. He has authored or co-authored over 80 technical papers in both journals and conferences. Prof. Peng has served as the Guest Editor of Future Generation Computer Systems and as a PC member for various prestigious international conferences. He is a Senior Member of the CCF and a member of ACM.

Ms. Lihong Cao is a Lecturer at the School of English Education, Guangdong University of Foreign Studies, Guangzhou, China. She has authored or coauthored over 10 technical papers in conference proceedings and journals such as the Journal of Network and Computer Applications, Knowledge-Based Systems, Information Sciences, and Tsinghua Science and Technology. Her research interests include Applied Linguistics, Natural Language Processing, Intelligent Computing.


Inhalt

Preface.- Acknowledgements.- Chapter 1. Introduction.- Chapter 2. BERT and Broad Learning for Textual Emotion Classification.- Chapter 3. Cascading Broad Learning for Textual Emotion
Classification.- Chapter 4. Dual Broad Learning for Textual Emotion Classification.- Chapter 5. Single-source Domain Adaptation for Emotion Classification Using CNN-Based Broad Learning.- Chapter 6. Multi-source Domain Adaptation for Emotion Classification Using Bi-LSTM-Based Broad Learning. Chapter 7. Emotion Classification in Textual Conversations Using Deep Broad Learning.- Chapter 8. Rational Graph Attention Network and Broad Learning for Emotion Classification in Textual
Conversations.- Chapter 9. Summary and Outlook.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031677175
    • Genre Information Technology
    • Auflage 2024
    • Lesemotiv Verstehen
    • Anzahl Seiten 172
    • Größe H241mm x B160mm x T16mm
    • Jahr 2024
    • EAN 9783031677175
    • Format Fester Einband
    • ISBN 303167717X
    • Veröffentlichung 28.09.2024
    • Titel Textual Emotion Classification Using Deep Broad Learning
    • Autor Lihong Cao , Sancheng Peng
    • Untertitel Socio-Affective Computing 11
    • Gewicht 430g
    • Herausgeber Springer Nature Switzerland
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38