The Continuum

CHF 60.20
Auf Lager
SKU
4UQAM9GTGR0
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

Das Buch ist gut geeignet als Textgrundlage für Seminare aus reeller Analysis (vorzugsweise für Seminare, nachdem die Studierenden den üblichen formal-axiomatischen Zugang zu den reellen Zahlen erfahren haben).

In this small text the basic theory of the continuum, including the elements of metric space theory and continuity is developed within the system of intuitionistic mathematics in the sense of L.E.J. Brouwer and H. Weyl. The main features are proofs of the famous theorems of Brouwer concerning the continuity of all functions that are defined on "whole" intervals, the uniform continuity of all functions that are defined on compact intervals, and the uniform convergence of all pointwise converging sequences of functions defined on compact intervals. The constructive approach is interesting both in itself and as a contrast to, for example, the formal axiomatic one.

A constructive approach to Real Analysis

Vorwort
Das Continuum - der Inbegriff der Reellen Zahlen

Autorentext
Rudolf Taschner is Professor of Mathematics at the "Institute for Analysis and Scientific Computing", Technical University Vienna, Austria. In his recent book "Der Zahlen gigantische Schatten" (Vieweg 2004) he describes how intensively numbers penetrate the aspects of our life, and how far the "shadows of numbers" reach.

Klappentext
In this small text the basic theory of the continuum, including the elements of metric space theory and continuity is developed within the system of intuitionistic mathematics in the sense of L.E.J. Brouwer and H. Weyl. The main features are proofs of the famous theorems of Brouwer concerning the continuity of all functions that are defined on "whole" intervals, the uniform continuity of all functions that are defined on compact intervals, and the uniform convergence of all pointwise converging sequences of functions defined on compact intervals. The constructive approach is interesting both in itself and as a contrast to, for example, the formal axiomatic one.



Inhalt
1 Introduction and historical remarks.- 1.1 Farey fractions.- 1.2 The pentagram.- 1.3 Continued fractions.- 1.4 Special square roots.- 1.5 Dedekind cuts.- 1.6 Weyl's alternative.- 1.7 Brouwer's alternative.- 1.8 Integration in traditional and in intuitionistic framework.- 1.9 The wager.- 1.10 How to read the following pages.- 2 Real numbers.- 2.1 Definition of real numbers.- 2.2 Order relations.- 2.3 Equality and apartness.- 2.4 Convergent sequences of real numbers.- 3 Metric spaces.- 3.1 Metric spaces and complete metric spaces.- 3.2 Compact metric spaces.- 3.3 Topological concepts.- 3.4 The s-dimensional continuum.- 4 Continuous functions.- 4.1 Pointwise continuity.- 4.2 Uniform continuity.- 4.3 Elementary calculations in the continuum.- 4.4 Sequences and sets of continuous functions.- 5 Literature.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783322820389
    • Sprache Englisch
    • Auflage 2005
    • Größe H240mm x B170mm x T9mm
    • Jahr 2012
    • EAN 9783322820389
    • Format Kartonierter Einband
    • ISBN 3322820386
    • Veröffentlichung 05.02.2012
    • Titel The Continuum
    • Autor Rudolf Taschner
    • Untertitel A Constructive Approach to Basic Concepts of Real Analysis
    • Gewicht 271g
    • Herausgeber Vieweg+Teubner Verlag
    • Anzahl Seiten 152
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38