Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
The Hardy Space of a Slit Domain
Details
This book examines Hardy spaces of slit domains and offers several descriptions of the invariant subspaces of the operator multiplication by z. It also discusses and characterizes the nearly invariant subspaces of these Hardy spaces.
If H is a Hilbert space and T : H ? H is a continous linear operator, a natural question to ask is: What are the closed subspaces M of H for which T M ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operator T = M (multiplication by the independent variable z, i. e. , M f = zf )on a z z Hilbert space of analytic functions on a bounded domain G in C. The characterization of these M -invariant subspaces is particularly interesting since it entails both the properties z of the functions inside the domain G, their zero sets for example, as well as the behavior of the functions near the boundary of G. The operator M is not only interesting in its z own right but often serves as a model operator for certain classes of linear operators. By this we mean that given an operator T on H with certain properties (certain subnormal operators or two-isometric operators with the right spectral properties, etc. ), there is a Hilbert space of analytic functions on a domain G for which T is unitarity equivalent to M .
Only book which covers Hardy spaces of slit domains Includes supplementary material: sn.pub/extras
Inhalt
Preliminaries.- Nearly invariant subspaces.- Nearly invariant and the backward shift.- Nearly invariant and de Branges spaces.- Invariant subspaces of the slit disk.- Cyclic invariant subspaces.- The essential spectrum.- Other applications.- Domains with several slits.- Final thoughts.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783034600972
- Sprache Englisch
- Auflage 2009
- Größe H240mm x B170mm x T9mm
- Jahr 2009
- EAN 9783034600972
- Format Kartonierter Einband
- ISBN 3034600976
- Veröffentlichung 14.08.2009
- Titel The Hardy Space of a Slit Domain
- Autor Alexandru Aleman , William T. Ross , Nathan S. Feldman
- Untertitel Frontiers in Mathematics
- Gewicht 258g
- Herausgeber Birkhäuser Basel
- Anzahl Seiten 144
- Lesemotiv Verstehen
- Genre Mathematik