Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
The Incremental Pruning Filters for POMDPs - Past Present Future
Details
Decision making is one of the central problems in the artificial intelligence and specifically in robotics. In most cases this problem comes with uncertainty both in the data received by the decision maker/agent and in the actions performed in the environment. One effective method to solve this problem is to model the environment and the agent as a Partially Observable Markov Decision Process(POMDP). A POMDP has a wide range of applications such as: Machine Vision, Marketing, Network troubleshooting, Medical diagnosis etc. In recent years, There has been a significant interest in the developing techniques for finding policies for (POMDPs). We consider a new technique, called Recursive Point Filter (RPF) based on the Incremental Pruning(IP) POMDP solver to introduce an alternative method to the Linear Programming (LP) filter.
Autorentext
Mahdi Naser-Moghadasi,M.Sc.: Obtained his Master's Degree in Computer Science from Texas Tech University. He was working as a Research Assistant in the Robotic and AI lab under supervision of Professor Larry Pyeatt. Later, He joined American Airline as a Senior Software developer researching and developing in the revenue management area.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659288357
- Sprache Englisch
- Größe H220mm x B220mm x T150mm
- Jahr 2012
- EAN 9783659288357
- Format Kartonierter Einband (Kt)
- ISBN 978-3-659-28835-7
- Titel The Incremental Pruning Filters for POMDPs - Past Present Future
- Autor Mahdi Naser-Moghadasi
- Untertitel A Recursive Point Filter Algorithm for the Incremental Pruning
- Herausgeber LAP Lambert Academic Publishing
- Anzahl Seiten 68
- Genre Mathematik