Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
The Kurzweil-Henstock Integral for Undergraduates
Details
This beginners' course provides students with a general and sufficiently easy to grasp theory of the Kurzweil-Henstock integral. The integral is indeed more general than Lebesgue's in RN, but its construction is rather simple, since it makes use of Riemann sums which, being geometrically viewable, are more easy to be understood. The theory is developed also for functions of several variables, and for differential forms, as well, finally leading to the celebrated StokesCartan formula. In the appendices, differential calculus in RN is reviewed, with the theory of differentiable manifolds. Also, the BanachTarski paradox is presented here, with a complete proof, a rather peculiar argument for this type of monographs.
First undergraduate book on the Kurzweil-Henstock integral Theory is developed also for functions of several variables and for differential forms Didactical exposition of the subject Avoid as much as possible unnecessary technicalities
Autorentext
Alessandro Fonda, Università degli Studi di Trieste, Italy.
Inhalt
Functions of one real variable.- Functions of several real variables.- Differential forms.- Differential calculus in RN.- The StokesCartan and the Poincaré theorems.- On differentiable manifolds.- The BanachTarski paradox.- A brief historical note.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319953205
- Sprache Englisch
- Auflage 1st edition 2018
- Größe H235mm x B155mm x T13mm
- Jahr 2018
- EAN 9783319953205
- Format Kartonierter Einband
- ISBN 3319953206
- Veröffentlichung 22.11.2018
- Titel The Kurzweil-Henstock Integral for Undergraduates
- Autor Alessandro Fonda
- Untertitel A Promenade Along the Marvelous Theory of Integration
- Gewicht 365g
- Herausgeber Springer International Publishing
- Anzahl Seiten 236
- Lesemotiv Verstehen
- Genre Mathematik