The Quasispecies Equation and Classical Population Models

CHF 156.35
Auf Lager
SKU
4OK8JQT9R1F
Stock 1 Verfügbar
Geliefert zwischen Mi., 25.02.2026 und Do., 26.02.2026

Details

This monograph studies a series of mathematical models of the evolution of a population under mutation and selection. Its starting point is the quasispecies equation, a general non-linear equation which describes the mutation-selection equilibrium in Manfred Eigen's famous quasispecies model. A detailed analysis of this equation is given under the assumptions of finite genotype space, sharp peak landscape, and class-dependent fitness landscapes. Different probabilistic representation formulae are derived for its solution, involving classical combinatorial quantities like Stirling and Euler numbers.

It is shown how quasispecies and error threshold phenomena emerge in finite population models, and full mathematical proofs are provided in the case of the WrightFisher model. Along the way, exact formulas are obtained for the quasispecies distribution in the long chain regime, on the sharp peak landscape and on class-dependent fitness landscapes.

Finally, several other classical population models are analyzed, with a focus on their dynamical behavior and their links to the quasispecies equation.

This book will be of interest to mathematicians and theoretical ecologists/biologists working with finite population models.


This book provides an in-depth study of the Eigen's Quasispecies equation in the context of population models. The case of the Wright-Fisher model is treated in detail, other classical population models are also discussed. Contains a foreword by Michel Benaïm.

Autorentext

Inhalt

  1. Introduction.- Part I.Finite Genotype Space.- 2. The Quasispecies equation.- 3. Non-Overlapping Generations.- 4. Overlapping Generations.- 5. Probabilistic Representations.- Part II. The Sharp Peak Landscape.- 6. Long Chain Regime.- 7. Error Threshold and Quasispecies.- 8. Probabilistic Derivation.- 9. Summation of the Series.- 10. Error Threshold in Infinite Populations.- Part III. Error Threshold in Finite Populations.- 11.Phase Transition.- 12. Computer Simulations.- 13. Heuristics.- 14. Shape of the Critical Curve.- 15. Framework for the Proofs.- Part IV. Proof for Wright-Fisher.- 16. Strategy of the Proof.- 17. The Non-Neutral Phase M.- 18. Mutation Dynamics.- 19. The Neutral Phase N.- 20. Synthesis.- Part V. Class-Dependent Fitness Landscapes.- 21. Generalized Quasispecies Distributions.- 22. Error Threshold.- 23. Probabilistic Representation.- 24. Probabilistic Interpretations.- 25. Infinite Population Models.- Part VI. A Glimpse at the Dynamics.- 26. Deterministic Level.- 27. From Finite to Infinite Population.- 28. Class-Dependent Landscapes.- A. Markov Chains and Classical Results.- References.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Anzahl Seiten 252
    • Herausgeber Springer International Publishing
    • Gewicht 547g
    • Untertitel Probability Theory and Stochastic Modelling 102
    • Autor Joseba Dalmau , Raphaël Cerf
    • Titel The Quasispecies Equation and Classical Population Models
    • Veröffentlichung 31.07.2022
    • ISBN 3031086627
    • Format Fester Einband
    • EAN 9783031086625
    • Jahr 2022
    • Größe H241mm x B160mm x T20mm
    • Lesemotiv Verstehen
    • Auflage 1st edition 2022
    • GTIN 09783031086625

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38