Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
The Structural Equation Modelling of Ordinal Data Using Dual Scaling
Details
This research demonstrates that Dual Scaling (DS) is a valuable tool for optimally scaling ordinal variables in the calculation of correlation matrices for analysis in structural equation modelling (SEM). More specifically, it shows that there are circumstances where correlation estimates based on DS would be a more appropriate choice for use in SEM than the Pearson product moment, canonical, or polychoric correlation techniques. With respect to ordinal variables, the study demonstrates that the SEM application of canonical correlation is unacceptable, that the Pearson correlation generates attenuated parameter estimates, and that the application of the polychoric correlation to inappropriate data (e.g., non-normal or skewed) can lead to non-positive definite matrices of correlation estimates. It is hoped that this work will give researchers an additional tool to model ordinal data in SEM, especially when other techniques prove problematic.
Autorentext
Dr. Hemsworth is currently a Professor of Business and a Professor of Nursing, at Nipissing University in Canada. As an applied statistician, he has been involved in multiple research programs, ranging from modelling of the decision making processes of innovation managers to the modelling of factors leading to post-traumatic distress and growth.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639708677
- Sprache Englisch
- Größe H220mm x B150mm x T15mm
- Jahr 2014
- EAN 9783639708677
- Format Kartonierter Einband
- ISBN 3639708679
- Veröffentlichung 09.04.2014
- Titel The Structural Equation Modelling of Ordinal Data Using Dual Scaling
- Autor David Hemsworth
- Gewicht 375g
- Herausgeber Scholars' Press
- Anzahl Seiten 240
- Genre Mathematik