Theorie der Wärme

CHF 59.65
Auf Lager
SKU
BL2IVSTBM5G
Stock 1 Verfügbar
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026

Details

heit aufgeiaßt werden muß. Dabei werden sich als Resultate von zentraler Be deutung ergeben: Diejenige Größe, welche die ganze Thermodynamik beherrscht, nämlich die Entropie, erweist sich als quantitatives Maß der soeben geschilderten Unkenntnis. Das ist fraglos eine der merkwürdigsten und tiefstliegenden Aus sagen der ganzen Physik. Sie wird natürlich nur sinnvoll durch eine exakte Formulierung, welche erst nach den Vorarbeiten der nächsten Abschnitte erfolgen kann. Ein beherrschender Zug der statistischen Mechanik besteht darin, daß die Zahl der mikroskopischen Freiheitsgrade - im wesentlichen gegeben durch die Zahl N der im System enthaltenen Atome - so ungeheuer groß ist. Obwohl mit wachsendem N unsere Kenntnis von der mikroskopischen Struktur immer geringer wird, werden dennoch die oben angedeuteten Wahrscheinlichkeitsaus sagen über makroskopische Größen um so schärfer, je größer N ist, in dem Sinne, daß wir im Limes N -+ oo wieder zu sicheren Aussagen gelangen. Dieser Zug der Wahrscheinlichkeitsrechnung ist so charakteristisch, daß wir ihn gleich jetzt an einem primitiven Beispiel erläutern wollen. Ein Gas bestehe aus N Molekülen, welche sich unabhängig voneinander in einem Volumen V bewegen (ideales Gas). Wir grenzen innerhalb V ein dagegen kleines Volumen v ab und interessieren uns für die Zahl n der Moleküle, welche sich in v aufhalten. Nennen wir V und 1-p = q, -y=P so sind p bzw. q die Wahrscheinlichkeiten dafür, ein hervorgehobenes Molekül innerhalb bzw. außerhalb v zu finden.

Klappentext

heit aufgeiaßt werden muß. Dabei werden sich als Resultate von zentraler Be­ deutung ergeben: Diejenige Größe, welche die ganze Thermodynamik beherrscht, nämlich die Entropie, erweist sich als quantitatives Maß der soeben geschilderten Unkenntnis. Das ist fraglos eine der merkwürdigsten und tiefstliegenden Aus­ sagen der ganzen Physik. Sie wird natürlich nur sinnvoll durch eine exakte Formulierung, welche erst nach den Vorarbeiten der nächsten Abschnitte erfolgen kann. Ein beherrschender Zug der statistischen Mechanik besteht darin, daß die Zahl der mikroskopischen Freiheitsgrade - im wesentlichen gegeben durch die Zahl N der im System enthaltenen Atome - so ungeheuer groß ist. Obwohl mit wachsendem N unsere Kenntnis von der mikroskopischen Struktur immer geringer wird, werden dennoch die oben angedeuteten Wahrscheinlichkeitsaus­ sagen über makroskopische Größen um so schärfer, je größer N ist, in dem Sinne, daß wir im Limes N -+ oo wieder zu sicheren Aussagen gelangen. Dieser Zug der Wahrscheinlichkeitsrechnung ist so charakteristisch, daß wir ihn gleich jetzt an einem primitiven Beispiel erläutern wollen. Ein Gas bestehe aus N Molekülen, welche sich unabhängig voneinander in einem Volumen V bewegen (ideales Gas). Wir grenzen innerhalb V ein dagegen kleines Volumen v ab und interessieren uns für die Zahl n der Moleküle, welche sich in v aufhalten. Nennen wir V und 1-p = q, -y=P so sind p bzw. q die Wahrscheinlichkeiten dafür, ein hervorgehobenes Molekül innerhalb bzw. außerhalb v zu finden.


Inhalt
I. Thermodynamik.- II. Statistische Mechanik.- III. Quantenstatistik.- IV. Ideale und reale Gase.- V. Der feste Körper.- VI. Schwankungen und Brownsche Bewegung.- VII. Thermodynamik irreversibler Prozesse.- Namen- und Sachverzeichnis.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783540153832
    • Anzahl Seiten 352
    • Lesemotiv Verstehen
    • Genre Atom- & Kernphysik
    • Auflage 3. Auflage 1985
    • Editor Wolfgang Ludwig
    • Schöpfer Wolfgang Ludwig
    • überarbeitet von Wolfgang Ludwig
    • Herausgeber Springer
    • Gewicht 413g
    • Untertitel Heidelberger Taschenbücher 10
    • Größe H203mm x B133mm x T20mm
    • Jahr 1985
    • EAN 9783540153832
    • Format Kartonierter Einband
    • ISBN 978-3-540-15383-2
    • Veröffentlichung 01.08.1985
    • Titel Theorie der Wärme
    • Autor Richard Becker
    • Sprache Deutsch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38