Theory and Applications of Abstract Semilinear Cauchy Problems

CHF 176.00
Auf Lager
SKU
31JFBDB9TNM
Stock 1 Verfügbar
Geliefert zwischen Do., 29.01.2026 und Fr., 30.01.2026

Details

Reviews the classical results on semigroup theory, Hille-Yosida Theorem, semilinear Cauchy problems with dense domain in details
Introduces the integrated semigroup theory in order to study semilinear Cauchy problems when the linear operator is nondensely defined and is not Hille-Yosida

Discusses the spectral throry for linear operators, including the spectral decomposition of the state space

Presents the center manifold theory, Hopf bifurcation theorem, and normal form theory for abstract semilinear Cauchy problems

Applies the abstract theories to functional differential equations, age-structured models, and parabolic equations arising in population dynamics and other applied subjects


Allows readers and graduate students with no background to start with the basic concepts The application-oriented readers will see how the abstract results apply to biological and physical problems Learn the fundamental theories on abstract equations

Autorentext

Dr. Pierre Magal is a professor in the Institut de Mathématiques de Bordeaux ****at the University of Bordeaux, France. His research interests are Differential Equations, Dynamical Systems, and Mathematical Biology. He studies nonlinear dynamics of abstract semilinear equations, functional differential equations, age-structured models, and parabolic systems. He is also interested in modeling some biological, epidemiological, and medical problems and studying the nonlinear dynamics of these models.

Shigui Ruan is a professor in the Department of Mathematics at the University of Miami, Coral Gables, Florida, USA. His research interests are Differential Equations, Dynamical Systems, and Mathematical Biology. He studies nonlinear dynamics of some types of differential equations, such as the center manifold theory and Hopf bifurcation in semilinear evolution equations, multiple-parameter bifurcations in delay equations, and traveling waves in nonlocal reaction-diffusion systems. He is also interested in modeling and studying transmission dynamics of some infectious diseases (malaria, Rift Valley Fever, Hepatitis B virus, schistosomiasis, human rabies, SARS, West Nile virus, etc.) and nonlinear population dynamics.

Inhalt
Chapter 1- Introduction.- Chapter 2- Semigroups and Hille-Yosida Theorem.- Chapter 3- Integrated Semigroups and Cauchy Problems with Non-dense Domain.- Chapter 4- Spectral Theory for Linear Operators.- Chapter 5- Semilinear Cauchy Problems with Non-dense Domain.- Chapter 6- Center Manifolds, Hopf Bifurcation and Normal Forms.- Chapter 7- Functional Differential Equations.- Chapter 8- Age-structured Models.- Chapter 9- Parabolic Equations.- References.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030015053
    • Sprache Englisch
    • Auflage 1st edition 2018
    • Größe H241mm x B160mm x T36mm
    • Jahr 2018
    • EAN 9783030015053
    • Format Fester Einband
    • ISBN 303001505X
    • Veröffentlichung 03.12.2018
    • Titel Theory and Applications of Abstract Semilinear Cauchy Problems
    • Autor Shigui Ruan , Pierre Magal
    • Untertitel Applied Mathematical Sciences 201
    • Gewicht 1010g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 568
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38