Theory of U-Statistics

CHF 213.45
Auf Lager
SKU
J5IVMACJIR2
Stock 1 Verfügbar
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026

Details

The theory of U-statistics goes back to the fundamental work of Hoeffding [1], in which he proved the central limit theorem. During last forty years the interest to this class of random variables has been permanently increasing, and thus, the new intensively developing branch of probability theory has been formed. The U-statistics are one of the universal objects of the modem probability theory of summation. On the one hand, they are more complicated "algebraically" than sums of independent random variables and vectors, and on the other hand, they contain essential elements of dependence which display themselves in the martingale properties. In addition, the U -statistics as an object of mathematical statistics occupy one of the central places in statistical problems. The development of the theory of U-statistics is stipulated by the influence of the classical theory of summation of independent random variables: The law of large num bers, central limit theorem, invariance principle, and the law of the iterated logarithm we re proved, the estimates of convergence rate were obtained, etc.

Klappentext

This monograph contains, for the first time, a systematic presentation of the theory of U-statistics. On the one hand, this theory is an extension of summation theory onto classes of dependent (in a special manner) random variables. On the other hand, the theory involves various statistical applications. The construction of the theory is concentrated around the main asymptotic problems, namely, around the law of large numbers, the central limit theorem, the convergence of distributions of U-statistics with degenerate kernels, functional limit theorems, estimates for convergence rates, and asymptotic expansions. Probabilities of large deviations and laws of iterated logarithm are also considered. The connection between the asymptotics of U-statistics destributions and the convergence of distributions in infinite-dimensional spaces are discussed. Various generalizations of U-statistics for dependent multi-sample variables and for varying kernels are examined. When proving limit theorems and inequalities for the moments and characteristic functions the martingale structure of U-statistics and orthogonal decompositions are used. The book has ten chapters and concludes with an extensive reference list. For researchers and students of probability theory and mathematical statistics.


Inhalt

  1. Basic Definitions and Notions.- 2. General Inequalities.- 3. The Law of Large Numbers.- 4. Weak Convergence.- 5. Functional Limit Theorems.- 6. Approximation in Limit Theorems.- 7. Asymptotic Expansions.- 8. Probabilities of Large Deviations.- 9. The Law of Iterated Logarithm.- 10. Dependent Variables.- Historical and bibliographical notes.- References.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789048143467
    • Sprache Englisch
    • Auflage Softcover reprint of hardcover 1st edition 1994
    • Größe H235mm x B155mm x T31mm
    • Jahr 2010
    • EAN 9789048143467
    • Format Kartonierter Einband
    • ISBN 9048143462
    • Veröffentlichung 08.12.2010
    • Titel Theory of U-Statistics
    • Autor Y. V. Borovskich , Vladimir S. Korolyuk
    • Untertitel Mathematics and Its Applications 273
    • Gewicht 850g
    • Herausgeber Springer Netherlands
    • Anzahl Seiten 568
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38