There Is No Infinite - Dimensional Lebesgue Measure

CHF 36.75
Auf Lager
SKU
VJQUB0QFUCJ
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, it is a theorem that there is no analogue of Lebesgue measure on an infinite-dimensional Banach space. Other kinds of measures are therefore used on infinite dimensional spaces: often, the abstract Wiener space construction is used. Alternatively, one may consider Lebesgue measure on finite-dimensional subspaces of the larger space and consider so-called prevalent and shy sets. Compact sets in Banach spaces may also carry natural measures: the Hilbert cube, for instance, carries the product Lebesgue measure. In a similar spirit, the compact topological group given by the Tychonoff product of infinitely many copies of the circle group is infinite-dimensional, and carries a Haar measure that is translation-invariant.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131147647
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131147647
    • Format Fachbuch
    • Titel There Is No Infinite - Dimensional Lebesgue Measure
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 72
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38